Product Code Database
Example Keywords: psp -ring $40-160
   » » Wiki: Porteous Formula
Tag Wiki 'Porteous Formula'.
Tag

Porteous formula
 (

In , the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is the expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of . Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over . pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and found the polynomial in general. proved a more general version, and generalized it further.


Statement
Given a morphism of vector bundles E, F of ranks m and n over a smooth variety, its k-th degeneracy locus ( k ≤ min( m, n)) is the variety of points where it has rank at most  k. If all components of the degeneracy locus have the expected ( m –  k)( n –  k) then Porteous's formula states that its fundamental class is the determinant of the matrix of size m –  k whose ( ij) entry is the Chern class c nk+ ji( F –  E).

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs